Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Hum Vaccin Immunother ; 19(1): 2206359, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-20231273

ABSTRACT

We previously demonstrated the efficacy of the COVID-19 vaccine candidate, SCB-2019, in adults in the SPECTRA phase 2/3 efficacy study. We extended the study to include 1278 healthy 12-17-year-old adolescents in Belgium, Colombia, and the Philippines who received either two doses of SCB-2019 or placebo 21 days apart, to assess immunogenicity as neutralizing antibodies against prototype SARS-CoV-2 and variants of concern, and safety and reactogenicity as solicited and unsolicited adverse events with a comparator group of young adults (18-25 years). In participants with no evidence of prior SARS-CoV-2 infection SCB-2019 immunogenicity in adolescents was non-inferior to that in young adults; respective geometric mean neutralizing titers (GMT) against prototype SARS-CoV-2 14 days after the second vaccination were 271 IU/mL (95% CI: 211-348) and 144 IU/mL (116-178). Most adolescents (1077, 84.3%) had serologic evidence of prior SAR-CoV-2 exposure at baseline; in these seropositive adolescents neutralizing GMTs increased from 173 IU/mL (135-122) to 982 IU/mL (881-1094) after the second dose. Neutralizing titers against Delta and Omicron BA SARS-CoV-2 variants were also increased, most notably in those with prior exposure. SCB-2019 vaccine was well tolerated with generally mild or moderate, transient solicited and unsolicited adverse events that were comparable in adolescent vaccine and placebo groups except for injection site pain - reported after 20% of SCB-2019 and 7.3% of placebo injections. SCB-2019 vaccine was highly immunogenic against SARS-CoV-2 prototype and variants in adolescents, especially in those with evidence of prior exposure, with comparable immunogenicity to young adults. Clinical trial registration: EudraCT 2020-004272-17; ClinicalTrials.gov NCT04672395.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Adult , Child , Humans , Young Adult , Adjuvants, Immunologic/adverse effects , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Immunogenicity, Vaccine , Protein Subunits , SARS-CoV-2
2.
Sci Rep ; 13(1): 8065, 2023 05 18.
Article in English | MEDLINE | ID: covidwho-2325740

ABSTRACT

The optimal booster vaccine schedule against COVID-19 is still being explored. The present study aimed at assessment of the immunogenicity and antibody persistency of inactivated-virus based vaccine, BBIP-CorV and protein-subunit based vaccines, PastoCovac/Plus through heterologous and homologous prime-boost vaccination. Totally, 214 individuals who were previously primed with BBIBP-CorV vaccines were divided into three arms on their choice as heterologous regimens BBIBP-CorV/PastoCovac (n = 68), BBIBP-CorV/PastoCovac Plus (n = 72) and homologous BBIBP-CorV (n = 74). PastoCovac booster recipients achieved the highest rate of anti-Spike IgG titer rise with a fourfold rise in 50% of the group. Anti-RBD IgG and neutralizing antibody mean rise and fold rise were almost similar between the PastoCovac and PastoCovac Plus booster receivers. The antibody durability results indicated that the generated antibodies were persistent until day 180 in all three groups. Nevertheless, a higher rate of antibody titer was seen in the heterologous regimen compared to BBIP-CorV group. Furthermore, no serious adverse event was recorded. The protein subunit-based booster led to a stronger humoral immune response in comparison with the BBIP-CorV booster receivers. Both the protein subunit boosters neutralized SARS-CoV-2 significantly more than BBIP-CorV. Notably, PastoCovac protein subunit-based vaccine could be successfully applied as a booster with convenient immunogenicity and safety profile.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Immunity, Humoral , Protein Subunits , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral
3.
Front Immunol ; 13: 951576, 2022.
Article in English | MEDLINE | ID: covidwho-2313576

ABSTRACT

After kidney transplantation, patients exhibit a poor response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. However, the efficacy and adverse effects of vaccines based on different platforms in these patients remain unclear. We prospectively analyzed both anti-spike protein antibody and cellular responses 1 month after the first and second doses of SARS-CoV-2 vaccines in 171 kidney transplant patients. Four vaccines, including one viral vector (ChAdOx1 nCov-19, n = 30), two mRNA (mRNA1273, n = 81 and BNT162b2, n = 38), and one protein subunit (MVC-COV1901, n = 22) vaccines were administered. Among the four vaccines, mRNA1273 elicited the strongest humoral response and induced the highest interferon-γ levels in patients with a positive cellular response against the spike protein. Antiproliferative agents were negatively associated with both the antibody and cellular responses. A transient elevation in creatinine levels was noted in approximately half of the patients after the first dose of mRNA1273 or ChadOx1, and only one of them presented with borderline cellular rejection without definite causality to vaccination. In conclusion, mRNA1273 had better immunogenicity than the other vaccines. Further, renal function needs to be carefully monitored after vaccination, and vaccination strategies should be tailored according to the transplant status and vaccine characteristics.


Subject(s)
COVID-19 Vaccines , COVID-19 , Kidney Transplantation , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Creatinine , Humans , Interferon-gamma , Kidney Transplantation/adverse effects , Protein Subunits , RNA, Messenger , SARS-CoV-2 , Transplant Recipients , Vaccination , Viral Vaccines
4.
EBioMedicine ; 92: 104574, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2308166

ABSTRACT

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Subject(s)
COVID-19 , Carrier Proteins , Cricetinae , Humans , Mice , Rats , Animals , COVID-19 Vaccines , SARS-CoV-2 , Protein Subunits , COVID-19/prevention & control , Australia , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral
5.
Int J Mol Sci ; 24(7)2023 Apr 02.
Article in English | MEDLINE | ID: covidwho-2305250

ABSTRACT

Evolutionary and functional studies have suggested that the emergence of Omicron variants can be determined by multiple fitness tradeoffs including immune escape, binding affinity, conformational plasticity, protein stability, and allosteric modulation. In this study, we embarked on a systematic comparative analysis of the conformational dynamics, electrostatics, protein stability, and allostery in the different functional states of spike trimers for BA.1, BA.2, and BA.2.75 variants. Using efficient and accurate coarse-grained simulations and atomistic reconstruction of the ensembles, we examined the conformational dynamics of the spike trimers that agree with the recent functional studies, suggesting that BA.2.75 trimers are the most stable among these variants. A systematic mutational scanning of the inter-protomer interfaces in the spike trimers revealed a group of conserved structural stability hotspots that play a key role in the modulation of functional dynamics and are also involved in the inter-protomer couplings through local contacts and interaction networks with the Omicron mutational sites. The results of mutational scanning provided evidence that BA.2.75 trimers are more stable than BA.2 and comparable in stability to the BA.1 variant. Using dynamic network modeling of the S Omicron BA.1, BA.2, and BA.2.75 trimers, we showed that the key network mediators of allosteric interactions are associated with the major stability hotspots that are interconnected along potential communication pathways. The network analysis of the BA.1, BA.2, and BA.2.75 trimers suggested that the increased thermodynamic stability of the BA.2.75 variant may be linked with the organization and modularity of the residue interaction network that allows for allosteric communications between structural stability hotspots and Omicron mutational sites. This study provided a plausible rationale for a mechanism in which Omicron mutations may evolve by targeting vulnerable sites of conformational adaptability to elicit immune escape while maintaining their control on balancing protein stability and functional fitness through robust allosteric communications with the stability hotspots.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protein Subunits , Protein Stability , Mutation
6.
PLoS One ; 18(3): e0283473, 2023.
Article in English | MEDLINE | ID: covidwho-2287555

ABSTRACT

SARS-CoV-2 pandemic has profound impacts on human life and global economy since the outbreak in 2019. With the new variants continue to emerge with greater immune escaping capability, the protectivity of the available vaccines is compromised. Therefore, development a vaccine that is capable of inducing immunity against variants including omicron strains is in urgent need. In this study, we developed a protein-based vaccine BCVax that is consisted of antigen delta strain spike protein and QS21-based adjuvant AB801 in nanoparticle immune stimulation complex format (AB801-ISCOM). Results from animal studies showed that high level of anti-S protein IgG was induced after two doses of BCVax and the IgG was capable of neutralizing multiple variants of pseudovirus including omicron BA.1 or BA.2 strains. In addition, strong Th1 response was stimulated after BCVax immunization. Furthermore, BCvax with AB801-ISCOM as the adjuvant showed significant stronger immunity compared with the vaccine using aluminum hydroxide plus CpG 1018 as the adjuvant. BCVax was also evaluated as a booster after two prior vaccinations, the IgG titers and pseudovirus neutralization activities against BA.2 or BA.4/BA.5 were further enhanced suggesting BCVax is a promising candidate as booster. Taken together, the pre-clinical data warrant BCVax for further development in clinic.


Subject(s)
COVID-19 , ISCOMs , Animals , Humans , COVID-19 Vaccines , SARS-CoV-2 , Protein Subunits , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Animals, Laboratory , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
7.
Nat Commun ; 14(1): 1309, 2023 03 10.
Article in English | MEDLINE | ID: covidwho-2275967

ABSTRACT

The rapid spread of the SARS-CoV-2 Omicron subvariants, despite the implementation of booster vaccination, has raised questions about the durability of protection conferred by current vaccines. Vaccine boosters that can induce broader and more durable immune responses against SARS-CoV-2 are urgently needed. We recently reported that our Beta-containing protein-based SARS-CoV-2 spike booster vaccine candidates with AS03 adjuvant (CoV2 preS dTM-AS03) elicited robust cross-neutralizing antibody responses at early timepoints against SARS-CoV-2 variants of concern in macaques primed with mRNA or protein-based subunit vaccine candidates. Here we demonstrate that the monovalent Beta vaccine with AS03 adjuvant induces durable cross-neutralizing antibody responses against the prototype strain D614G as well as variants Delta (B.1.617.2), Omicron (BA.1 and BA.4/5) and SARS-CoV-1, that are still detectable in all macaques 6 months post-booster. We also describe the induction of consistent and robust memory B cell responses, independent of the levels measured post-primary immunization. These data suggest that a booster dose with a monovalent Beta CoV2 preS dTM-AS03 vaccine can induce robust and durable cross-neutralizing responses against a broad spectrum of variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Vaccines , Broadly Neutralizing Antibodies , Protein Subunits , Macaca , Primates , Antibodies, Viral , Antibodies, Neutralizing
8.
Emerg Microbes Infect ; 12(1): e2179357, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2257670

ABSTRACT

The SARS-CoV-2 Omicron variants of concern (VOCs) showed severe resistance to the early-approved COVID-19 vaccines-induced immune responses. The breakthrough infections by the Omicron VOCs are currently the major challenge for pandemic control. Therefore, booster vaccination is crucial to enhance immune responses and protective efficacy. Previously, we developed a protein subunit COVID-19 vaccine ZF2001, based on the immunogen of receptor-binding domain (RBD) homodimer, which was approved in China and other countries. To adapt SARS-CoV-2 variants, we further developed chimeric Delta-Omicron BA.1 RBD-dimer immunogen which induced broad immune responses against SARS-CoV-2 variants. In this study, we tested the boosting effect of this chimeric RBD-dimer vaccine in mice after priming with two doses of inactivated vaccines, compared with a booster of inactivated vaccine or ZF2001. The results demonstrated that boosting with bivalent Delta-Omicron BA.1 vaccine greatly promoted the neutralizing activity of the sera to all tested SARS-CoV-2 variants. Therefore, the Delta-Omicron chimeric RBD-dimer vaccine is a feasible booster for those with prior vaccination of COVID-19 inactivated vaccines.


Subject(s)
COVID-19 , Carrier Proteins , Animals , Humans , Mice , COVID-19 Vaccines , SARS-CoV-2 , Protein Subunits , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral
9.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: covidwho-2253412

ABSTRACT

Millions of people have been vaccinated with Gam-COVID-Vac but fine specificities of induced antibodies have not been fully studied. Plasma from 12 naïve and 10 coronavirus disease 2019 (COVID-19) convalescent subjects was obtained before and after two immunizations with Gam-COVID-Vac. Antibody reactivity in the plasma samples (n = 44) was studied on a panel of micro-arrayed recombinant folded and unfolded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and 46 peptides spanning the spike protein (S) and by immunoglobulin G (IgG) subclass enzyme-linked immunosorbent assay (ELISA). The ability of Gam-COVID-Vac-induced antibodies to inhibit binding of the receptor-binding domain (RBD) to its receptor angiotensin converting enzyme 2 (ACE2) was investigated in a molecular interaction assay (MIA). The virus-neutralizing capacity of antibodies was studied by the pseudo-typed virus neutralization test (pVNT) for Wuhan-Hu-1 and Omicron. We found that Gam-COVID-Vac vaccination induced significant increases of IgG1 but not of other IgG subclasses against folded S, spike protein subunit 1 (S1), spike protein subunit 2 (S2), and RBD in a comparable manner in naïve and convalescent subjects. Virus neutralization was highly correlated with vaccination-induced antibodies specific for folded RBD and a novel peptide (i.e., peptide 12). Peptide 12 was located close to RBD in the N-terminal part of S1 and may potentially be involved in the transition of the pre- to post-fusion conformation of the spike protein. In summary, Gam-COVID-Vac vaccination induced S-specific IgG1 antibodies in naive and convalescent subjects in a comparable manner. Besides the antibodies specific for RBD, the antibodies induced against a peptide close to the N-terminus of RBD were also associated with virus-neutralization.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Epitopes , Antibodies, Neutralizing , Antibodies, Viral , Protein Subunits , Spike Glycoprotein, Coronavirus/metabolism , Antibody Formation , Immunoglobulin G
10.
Viruses ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2241292

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein subunit vaccine is one of the mainstream technology platforms for the development of COVID-19 vaccines, and most R&D units use the receptor-binding domain (RBD) or spike (S) protein as the main target antigen. The complexity of vaccine design, sequence, and expression systems makes it urgent to establish common antigen assays to facilitate vaccine development. In this study, we report the development of a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) to determine the antigen content of SARS-CoV-2 protein subunit vaccines based on the United States Pharmacopeia <1220> and ICH (international conference on harmonization) Q14 and Q2 (R2) requirements. A monoclonal antibody (mAb), 20D8, was identified as the detection antibody based on its high RBD binding activity (EC50 = 8.4 ng/mL), broad-spectrum anti-variant neutralizing activity (EC50: 2.7−9.8 ng/mL for pseudovirus and EC50: 9.6−127 ng/mL for authentic virus), good in vivo protection, and a recognized linear RBD epitope (369−379 aa). A porcine anti-RBD polyclonal antibody was selected as the coating antibody. Assay performance met the requirements of the analytical target profile with an accuracy and precision of ≥90% and adequate specificity. Within the specification range of 70−143%, the method capability index was >0.96; the misjudgment probability was <0.39%. The method successfully detected SARS-CoV-2 protein subunit vaccine antigens (RBD or S protein sequences in Alpha, Beta, Gamma, or Delta variants) obtained from five different manufacturers. Thus, we present a new robust, reliable, and general method for measuring the antigenic content of SARS-CoV-2 protein subunit vaccines. In addition to currently marketed and emergency vaccines, it is suitable for vaccines in development containing antigens derived from pre-Omicron mutant strains.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines, Subunit , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Enzyme-Linked Immunosorbent Assay , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
Lancet Child Adolesc Health ; 7(4): 269-279, 2023 04.
Article in English | MEDLINE | ID: covidwho-2240860

ABSTRACT

BACKGROUND: ZF2001 is a recombinant protein subunit vaccine against SARS-CoV-2 that has been approved for use in China, Colombia, Indonesia, and Uzbekistan in adults aged 18 years or older, but not yet in children and adolescents younger than 18 years. We aimed to evaluate the safety and immunogenicity of ZF2001 in children and adolescents aged 3-17 years in China. METHODS: The randomised, double-blind, placebo-controlled, phase 1 trial and the open-label, non-randomised, non-inferiority, phase 2 trial were done at the Xiangtan Center for Disease Control and Prevention (Hunan Province, China). Healthy children and adolescents aged 3-17 years, without a history of SARS-CoV-2 vaccination, without a history of COVID-19, without COVID-19 at the time of the study, and without contact with patients with confirmed or suspected COVID-19 were included in the phase 1 and phase 2 trials. In the phase 1 trial, participants were divided into three groups according to age (3-5 years, 6-11 years, and 12-17 years). Each group was randomly assigned (4:1), using block randomisation with five blocks, each with a block size of five, to receive three 25 µg doses of the vaccine, ZF2001, or placebo intramuscularly in the arm 30 days apart. The participants and investigators were masked to treatment allocation. In the phase 2 trial, participants received three 25 µg doses of ZF2001 30 days apart and remained stratified by age group. For phase 1, the primary endpoint was safety and the secondary endpoint was immunogenicity (humoral immune response on day 30 after the third vaccine dose: geometric mean titre [GMT] of prototype SARS-CoV-2 neutralising antibodies and seroconversion rate, and geometric mean concentration [GMC] of prototype SARS-CoV-2 receptor-binding domain [RBD]-binding IgG antibodies and seroconversion rate). For phase 2, the primary endpoint was the GMT of SARS-CoV-2 neutralising antibodies with seroconversion rate on day 14 after the third vaccine dose, and the secondary endpoints included the GMT of RBD-binding antibodies and seroconversion rate on day 14 after the third vaccine dose, the GMT of neutralising antibodies against the omicron BA.2 subvariant and seroconversion rate on day 14 after the third vaccine dose, and safety. Safety was analysed in participants who received at least one dose of the vaccine or placebo. Immunogenicity was analysed in the full-analysis set (ie, participants who received at least one dose and had antibody results) by intention to treat and in the per-protocol set (ie, participants who completed the whole vaccination course and had antibody results). Non-inferiority in the phase 2 trial (neutralising antibody titre of participants from this trial aged 3-17 years vs that of participants aged 18-59 years from a separate phase 3 trial) for clinical outcome assessment was based on the geometric mean ratio (GMR) and was considered met if the lower bound of the 95% CI for the GMR was 0·67 or greater. These trials are registered with ClinicalTrials.gov, NCT04961359 (phase 1) and NCT05109598 (phase 2). FINDINGS: Between July 10 and Sept 4, 2021, 75 children and adolescents were randomly assigned to receive ZF2001 (n=60) or placebo (n=15) in the phase 1 trial and were included in safety and immunogenicity analyses. Between Nov 5, 2021, and Feb 14, 2022, 400 participants (130 aged 3-7 years, 210 aged 6-11 years, and 60 aged 12-17 years) were included in the phase 2 trial and were included in the safety analysis; six participants were excluded from the immunogenicity analyses. 25 (42%) of 60 participants in the ZF2001 group and seven (47%) of 15 participants in the placebo group in phase 1, and 179 (45%) of 400 participants in phase 2, had adverse events within 30 days after the third vaccination, without a significant difference between groups in phase 1. Most adverse events were grade 1 or 2 (73 [97%] of 75 in the phase 1 trial, and 391 [98%] of 400 in the phase 2 trial). One participant in the phase 1 trial and three in the phase 2 trial who received ZF2001 had serious adverse events. One serious adverse event (acute allergic dermatitis) in the phase 2 trial was possibly related to the vaccine. In the phase 1 trial, on day 30 after the third dose, in the ZF2001 group, seroconversion of neutralising antibodies against SARS-CoV-2 was observed in 56 (93%; 95% CI 84-98) of 60 participants, with a GMT of 176·5 (95% CI 118·6-262·8), and seroconversion of RBD-binding antibodies was observed in all 60 (100%; 95% CI 94-100) participants, with a GMC of 47·7 IU/mL (95% CI 40·1-56·6). In the phase 2 trial, on day 14 after the third dose, seroconversion of neutralising antibodies against SARS-CoV-2 was seen in 392 (99%; 95% CI 98-100) participants, with a GMT of 245·4 (95% CI 220·0-273·7), and seroconversion of RBD-binding antibodies was observed in all 394 (100%; 99-100) participants, with a GMT of 8021 (7366-8734). On day 14 after the third dose, seroconversion of neutralising antibodies against the omicron subvariant BA.2 was observed in 375 (95%; 95% CI 93-97) of 394 participants, with a GMT of 42·9 (95% CI 37·9-48·5). For the non-inferiority comparison of participants aged 3-17 years with those aged 18-59 years for SARS-CoV-2 neutralising antibodies, the adjusted GMR was 8·6 (95% CI 7·0-10·4), with the lower bound of the GMR greater than 0·67. INTERPRETATION: ZF2001 is safe, well tolerated, and immunogenic in children and adolescents aged 3-17 years. Vaccine-elicited sera can neutralise the omicron BA.2 subvariant, but with reduced activity. The results support further studies of ZF2001 in children and adolescents. FUNDING: Anhui Zhifei Longcom Biopharmaceutical and the Excellent Young Scientist Program from National Natural Science Foundation of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Child , Adolescent , COVID-19 Vaccines/adverse effects , Protein Subunits , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
12.
Vaccine ; 41(13): 2253-2260, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2231044

ABSTRACT

BACKGROUND: We evaluated the safety of SCB-2019, a protein subunit vaccine candidate containing a recombinant SARS-CoV-2 spike (S) trimer fusion protein, combined with CpG-1018/alum adjuvants. METHODS: This ongoing phase 2/3, double-blind, placebo-controlled, randomized trial is being conducted in Belgium, Brazil, Colombia, the Philippines, and South Africa in participants ≥ 12 years of age. Participants were randomly assigned to receive 2 doses of SCB-2019 or placebo administered intramuscularly 21 days apart. Here, we present the safety results of SCB-2019 over the 6-month period following 2-dose primary vaccination series in all adult participants (≥18 years of age). RESULTS: A total of 30,137 adult participants received at least one dose of study vaccine (n = 15,070) or placebo (n = 15,067) between 24 March 2021 and 01 December 2021. Unsolicited adverse events, medically-attended adverse events, adverse events of special interest, and serious adverse events were reported in similar frequencies in both study arms over the 6-month follow-up period. Vaccine-related SAEs were reported by 4 of 15,070 SCB-2019 recipients (hypersensitivity reactions in two participants, Bell's palsy, and spontaneous abortion) and 2 of 15,067 placebo recipients (COVID-19, pneumonia, and acute respiratory distress syndrome in one participant and spontaneous abortion in the other one). No signs of vaccine-associated enhanced disease were observed. CONCLUSIONS: SCB-2019 administered as a 2-dose series has an acceptable safety profile. No safety concerns were identified during the 6-month follow-up after the primary vaccination. CLINICAL TRIALS REGISTRATION: NCT04672395; EudraCT: 2020-004272-17.


Subject(s)
Abortion, Spontaneous , COVID-19 , Pregnancy Complications, Infectious , Female , Pregnancy , Adult , Humans , COVID-19/prevention & control , SARS-CoV-2 , Protein Subunits , Abortion, Spontaneous/chemically induced , Follow-Up Studies , Vaccines, Subunit/adverse effects , Adjuvants, Immunologic/adverse effects , Double-Blind Method , Immunogenicity, Vaccine , Antibodies, Viral , Pregnancy Complications, Infectious/chemically induced
13.
Math Biosci ; 358: 108970, 2023 04.
Article in English | MEDLINE | ID: covidwho-2230339

ABSTRACT

We consider a general mathematical model for protein subunit vaccine with a focus on the MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2, and use the model to study immunological outcomes in the humoral and cell-mediated arms of the immune response from vaccination. The mathematical model is fit to vaccine clinical trial data. We elucidate the role of Interferon-γ and Interleukin-4 in stimulating the immune response of the host. Model results, and results from a sensitivity analysis, show that a balance between the TH1 and TH2 arms of the immune response is struck, with the TH1 response being dominant. The model predicts that two-doses of the vaccine at 28 days apart will result in approximately 85% humoral immunity loss relative to peak immunity approximately 6 months post dose 1.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Protein Subunits , COVID-19/prevention & control , SARS-CoV-2 , Interferon-gamma , Vaccination , Antibodies, Viral
14.
Vaccine ; 41(11): 1875-1884, 2023 03 10.
Article in English | MEDLINE | ID: covidwho-2228430

ABSTRACT

BACKGROUND: We evaluated immunogenicity of SCB-2019, a subunit vaccine candidate containing a pre-fusion trimeric form of the SARS-CoV-2 spike (S)-protein adjuvanted with CpG-1018/alum. METHODS: The phase 2/3, double-blind, randomized SPECTRA trial was conducted in five countries in participants aged ≥ 18 years, either SARS-CoV-2-naïve or previously exposed. Participants were randomly assigned to receive two doses of SCB-2019 or placebo administered intramuscularly 21 days apart. In the phase 2 part of the study, on days 1, 22, and 36, neutralizing antibodies were measured by pseudovirus and wild-type virus neutralization assays to SARS-CoV-2 prototype and variants, and ACE2-receptor-binding antibodies and SCB-2019-binding antibodies were measured by ELISA. Cell-mediated immunity was measured by intracellular cytokine staining via flow cytometry. RESULTS: 1601 individuals were enrolled between 24 March and 13 September 2021 and received at least one vaccine dose. Immunogenicity analysis was conducted in a phase 2 subset of 691 participants, including 428 SARS-CoV-2-naïve (381 vaccine and 47 placebo recipients) and 263 SARS-CoV-2-exposed (235 vaccine and 28 placebo recipients). In SARS-CoV-2-naïve participants, GMTs of neutralizing antibodies against prototype virus increased 2 weeks post-second dose (day 36) compared to baseline (224 vs 12.7 IU/mL). Seroconversion rate was 82.5 %. In SARS-CoV-2-exposed participants, one SCB-2019 dose increased GMT of neutralizing antibodies by 48.3-fold (1276.1 IU/mL on day 22) compared to baseline. Seroconversion rate was 92.4 %. Increase was marginal post-second dose. SCB-2019 also showed cross-neutralization capability against nine variants, including Omicron, in SARS-CoV-2-exposed participants at day 36. SCB-2019 stimulated Th1-biased cell-mediated immunity to the S-protein in both naïve and exposed participants. The vaccine was well tolerated, no safety concerns were raised from the study. CONCLUSIONS: A single dose of SCB-2019 was immunogenic in SARS-CoV-2-exposed individuals, whereas two doses were required to induce immune response in SARS-CoV-2-naïve individuals. SCB-2019 elicited a cross-neutralizing response against emergent SARS-CoV-2 variants at antibody levels associated with clinical protection, underlining its potential as a booster. CLINICALTRIALS: gov: NCT04672395; EudraCT: 2020-004272-17.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protein Subunits , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , Antibodies, Neutralizing , Vaccines, Subunit , Adjuvants, Immunologic , Double-Blind Method , Immunogenicity, Vaccine
15.
Expert Rev Vaccines ; 22(1): 35-53, 2023.
Article in English | MEDLINE | ID: covidwho-2151492

ABSTRACT

INTRODUCTION: Vaccines prevent disease and disability; save lives and represent a good assessment of health interventions. Several systematic reviews on the efficacy and effectiveness of COVID-19 vaccines have been published, but the immunogenicity and safety of these vaccines should also be addressed. AREAS COVERED: This systemic investigation sought to explain the efficacy, immunogenicity, and safety of new vaccination technologies against SARS-CoV-2 in people over 18 years old. Original research studying the effectiveness on mRNA, protein subunit vaccines, and viral vector vaccines against SARS-CoV-2 in people over 18 years old was analyzed. Several databases (Web of Science, Scopus, MEDLINE and EMBASE) were searched between 2012 and November 2022 for English-language papers using text and MeSH terms related to SARS-CoV-2, mechanism, protein subunit vaccine, viral vector, and mRNA. The protocol was registered on PROSPERO, CRD42022341952. Study quality was assessed using the NICE methodology. We looked at a total of six original articles. All studies gathered and presented quantitative data. EXPERT OPINION: Our results suggest that new vaccinations could have more than 90% efficacy against SARS-CoV-2, regardless of the technology used. Furthermore, adverse reactions go from mild to moderate, and good immunogenicity can be observed for all vaccine types.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Adolescent , Protein Subunits , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , RNA, Messenger , COVID-19/prevention & control , Vaccines, Subunit/adverse effects , Antibodies, Viral , Immunogenicity, Vaccine
16.
Front Immunol ; 13: 1017590, 2022.
Article in English | MEDLINE | ID: covidwho-2142027

ABSTRACT

Background: In response to SARS-CoV-2 mutations and waning antibody levels after two-dose inactivated vaccines, we assessed whether a third dose of recombinant protein subunit vaccine (ZF2001) boosts immune responses. Methods: An open-label single-center non-random trial was conducted on people aged 18 years and above at five sites in China. All participants received a two-dose inactivated vaccine (CoronaVac) as their prime doses within 3-9 months of the trial. Primary outcomes were safety and immunogenicity, primarily the geometric mean titers (GMTs) of neutralizing antibodies to live wildtype SARS-CoV-2. Results: A total of 480 participants (median age, 51; range 21-84 years) previously vaccinated with two-dose CoronaVac received a third booster dose of ZF2001 3-4, 5-6, or 7-9-months later. The overall incidence of adverse reactions within 30 days after vaccination was 5.83% (28/480). No serious adverse reactions were reported after the third dose of ZF2001. GMTs in the 3-4-, 5-6-, and 7-9-month groups before vaccination were 3.96, 4.60, and 3.78, respectively. On Day 14, GMTs increased to 33.06, 47.51, and 44.12, respectively. After the booster, GMTs showed no significant difference among the three prime-boost interval groups (all P>0.05). Additionally, GMTs in older adults were lower than those in younger adults on Day 14 for the three groups (P=0.0005, P<0.0001, and P<0.0001). Conclusion: Heterologous boosting with ZF2001 was safe and immunogenic, and prime-boost intervals did not affect the immune response. The immune response was weaker in older than younger adults.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Humans , Middle Aged , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Protein Subunits , SARS-CoV-2 , Vaccines, Inactivated/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Synthetic/adverse effects , Young Adult , Adult , Aged, 80 and over
17.
Dis Markers ; 2022: 1118195, 2022.
Article in English | MEDLINE | ID: covidwho-2138216

ABSTRACT

Background: Mitochondria have been involved in host defense upon viral infections. Factor Xa (FXa), a coagulating factor, may also have influence on mitochondrial functionalities. The aim was to analyze if in human pulmonary microvascular endothelial cells (HPMEC), the SARS-CoV-2 (COVID-19) spike protein subunits, S1 and S2 (S1+S2), could alter mitochondrial metabolism and what is the role of FXA. Methods: HPMEC were incubated with and without recombinants S1+S2 (10 nmol/L each). Results: In control conditions, S1+S2 failed to modify FXa expression. However, in LPS (1 µg/mL)-incubated HPMEC, S1+S2 significantly increased FXa production. LPS tended to reduce mitochondrial membrane potential with respect to control, but in higher and significant degree, it was reduced when S1+S2 were present. LPS did not significantly modify cytochrome c oxidase activity as compared with control. Addition of S1+S2 spike subunits to LPS-incubated HPMEC significantly increased cytochrome c oxidase activity with respect to control. Lactate dehydrogenase activity was also increased by S1+S2 with respect to control and LPS alone. Protein expression level of uncoupled protein-2 (UCP-2) was markedly expressed when S1+S2 were added together to LPS. Rivaroxaban (50 nmol/L), a specific FXa inhibitor, significantly reduced all the above-mentioned alterations induced by S1+S2 including UCP-2 expression. Conclusions: In HPMEC undergoing to preinflammatory condition, COVID-19 S1+S2 spike subunits promoted alterations in mitochondria metabolism suggesting a shift from aerobic towards anaerobic metabolism that was accompanied of high FXa production. Rivaroxaban prevented all the mitochondrial metabolic changes mediated by the present COVID-19 S1 and S2 spike subunits suggesting the involvement of endogenous FXa.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/metabolism , Factor Xa/metabolism , SARS-CoV-2 , Endothelial Cells/metabolism , Protein Subunits/metabolism , Rivaroxaban/pharmacology , Rivaroxaban/metabolism , Electron Transport Complex IV/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Mitochondria/metabolism
18.
Front Immunol ; 13: 1027180, 2022.
Article in English | MEDLINE | ID: covidwho-2109770

ABSTRACT

Under the background of the severe human health and world economic burden caused by COVID-19, the attenuation of vaccine protection efficacy, and the prevalence and immune escape of emerging variants of concern (VOCs), the third dose of booster immunization has been put on the agenda. Systems biology approaches can help us gain new perspectives on the characterization of immune responses and the identification of factors underlying vaccine-induced immune efficacy. We analyzed the antibody signature and transcriptional responses of participants vaccinated with COVID-19 inactivated vaccine and protein subunit vaccine as a third booster dose. The results from the antibody indicated that the third booster dose was effective, and that heterologous vaccination with the protein subunit vaccine as a booster dose induced stronger humoral immune responses than the homologous vaccination with inactivated vaccine, and might be more effective against VOCs. In transcriptomic analysis, protein subunit vaccine induced more differentially expressed genes that were significantly associated with many important innate immune pathways. Both the homologous and heterologous boosters could increase the effectiveness against COVID-19, and compared with the inactivated vaccine, the protein subunit vaccine, mediated a stronger humoral immune response and had a more significant correlation with the innate immune function module, which provided certain data support for the third booster immunization strategy.


Subject(s)
COVID-19 , Immunity, Humoral , Humans , Transcriptome , Protein Subunits , Immunization, Secondary , COVID-19/prevention & control , Vaccines, Inactivated , Vaccines, Subunit
19.
BMC Med ; 20(1): 409, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2089196

ABSTRACT

BACKGROUND: Dose fractionation of a coronavirus disease 2019 (COVID-19) vaccine could effectively accelerate global vaccine coverage, while supporting evidence of efficacy, immunogenicity, and safety are unavailable, especially with emerging variants. METHODS: We systematically reviewed clinical trials that reported dose-finding results and estimated the dose-response relationship of neutralizing antibodies (nAbs) of COVID-19 vaccines using a generalized additive model. We predicted the vaccine efficacy against both ancestral and variants, using previously reported correlates of protection and cross-reactivity. We also reviewed and compared seroconversion to nAbs, T cell responses, and safety profiles between fractional and standard dose groups. RESULTS: We found that dose fractionation of mRNA and protein subunit vaccines could induce SARS-CoV-2-specific nAbs and T cells that confer a reasonable level of protection (i.e., vaccine efficacy > 50%) against ancestral strains and variants up to Omicron. Safety profiles of fractional doses were non-inferior to the standard dose. CONCLUSIONS: Dose fractionation of mRNA and protein subunit vaccines may be safe and effective, which would also vary depending on the characteristics of emerging variants and updated vaccine formulations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Protein Subunits , RNA, Messenger , SARS-CoV-2 , Viral Vaccines
20.
Sci Rep ; 12(1): 16236, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2050539

ABSTRACT

The SARS-CoV-2 prefusion spike protein is characterized by a high degree of flexibility and temporal transformations associated with its multifunctional behavior. In this study, we have examined the dynamics of the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein in detail. Its primary, binding subdomain with human Angiotensin Covering Enzyme II includes a highly conspicuous flap or loop that is part of a beta hairpin loop structural motif. Dynamic details of the RBD obtained through RMSF and Order Parameter calculations are consistent with structural details including the stability of "glue" points or dominant interaction energy residues of the RBD in the Up and Down states with its neighboring N-terminal domain (NTD) protomer. The RBD flap in the Up state protomer periodically obstructs the binding site on an approximate 70 ns time interval and is reminiscent of an HIV-1 protease polypeptide flap that opens and closes to modulate that enzymes activity. No claim is made here regarding the possible modulating role of the flap; however, the flap may be a potential site for therapeutic targeting aimed at keeping it in the closed state, as previously demonstrated in the inhibition of the HIV-1 protease polypeptide. The RBD primary binding subdomain is further shown to have not only similar dynamics but, also, an approximate 30% sequence similarity to the HIV-1 protease polypeptide.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Angiotensins/metabolism , HIV Protease , Humans , Peptides/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Subunits/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL